U.V. Irradiation-induced Fission of a C=C or C=C Bond adsorbed on TiO_2

By CHEBOCK YUN, MASAKAZU AMPO, SUKEYA KODAMA, and YUTAKA KUBOKAWA* (Department of Applied Chemistry, University of Osaka Prefecture, Sakar, Osaka, 591 Japan)

Summary The major products of the photohydrogenation of alkenes or alkynes on TiO_2 are alkanes formed via the fission of the C=C or C=C bond, which is caused by the interaction of the bonds with the O⁻ hole centres.

ALTHOUGH the reactivities of O^- hole centres formed by u.v. irradiation of oxides have been discussed by a number of workers,¹ there are few or no reports concerning their reactivities towards the scission of the bonds between carbon atoms. The present communication deals with this topic.

With CH₃C=CH and C₂H₅C=CH on TiO₂-A, the major products are alkanes, formed by hydrogenation accompanied by scission of the C=C bond (Table). With CH₂=CH₂ and CH₃CH=CH₂, in addition to these alkanes, alkanes formed without C=C bond fission are produced. The Table also shows the major products obtained using TiO₂-B. Alkanes are again formed by hydrogenation accompanied by scission of the C=C bond. If the C-C bond were cleaved, elimination of CH₃ groups would occur, and C₂H₄ and C₃H₆ would be formed in the reaction of C₃H₆ and C₄H₈ respectively. The lack of formation of these compounds confirms

TABLE. TiO_2-A · Water vapour was adsorbed at room temperature until a pressure of a few mmHg was reached, after which the
evacuation was carried out at room temperature.Catalyst, 300 mg; reactant 63 μ mol. $TiO_2-\beta$ · As A, except the amount of water
vapour introduced was insufficient to form a monolayer.Catalyst, 50 mg; reactant, 8.8 μ mol.

Catalyst TiO ₂ -A	Reactants CH=CH CH ₂ C=CH C ₂ H ₅ C=CH CH ₂ =CH ₂ CH ₂ CH=CH ₂	$\begin{array}{l} Products \ (\mu mol) \\ C_2H_4 \ (2\cdot49), \ CH_4 \ (1\cdot66), \ C_2H_5CH=CH_2 \ (0\cdot39) \\ C_2H_6 \ (4\cdot90), \ C_2H_5CH=CH_2 \ (1\cdot96), \ CH_4 \ (1\cdot09) \\ C_3H_8 \ (4\cdot65), \ CH_4=C=CHCH_8 \ (0\cdot38) \\ CH_4 \ (0\cdot30), \ C_2H_8 \ (0\cdot045), \ C_8H_8 \ (0\cdot01) \\ C_2H_6 \ (0\cdot625), \ C_3H_8 \ (0\cdot23), \ CH_4 \ (0\cdot048) \end{array}$
Т1О 2 -В	CH ₂ =CHCH=CH ₂ (CH ₂) ₂ C=CH ₂ CH ₃ CH=CH ₂ CH ₂ =CH ₂	$\begin{array}{l} {\rm CH_3CH=CH_2\ (0\cdot0385),\ C_3H_6\ (0\cdot0143),\ CH_4\ (traces) \\ {\rm C_3H_6\ (0\cdot0203),\ CH_4\ (0\cdot0105) \\ {\rm C_2H_6\ (0\cdot0085),\ CH_4\ (traces) \\ {\rm CH_4\ (0\cdot0017) } \end{array}$

Water vapour was adsorbed, under various conditions (Table), onto TiO_2 (P-25 from the Japan Aerosil Co., surface area 40 m² g⁻¹) which had been subjected to oxygen treatment at 720 K Alkenes or alkynes were then introduced and irradiated by a high pressure mercury lamp without a filter.

that C=C bond fission takes place, but not C-C bond fission n Increasing the temperature of evacuation after water vapour adsorption led to markedly decreased amounts of alkanes produced. The extent of this effect was much less for the formation of CH₄ than for the formation of alkanes of higher molecular weight.

Boonstra et al.² have proposed that the H atoms produced by u.v. irradiation of Ti-OH groups play a significant role in the photohydrogenation of ethene. There is no doubt that the hydrogen necessary for the formation of alkanes comes from Ti-OH groups, although the mechanism of alkane formation is unclear. However, it seems very difficult to attribute the occurrence of the C=C or the C=C bond fission to the formation of H atoms. Furthermore, the OH radicals formed by hole trapping of the OH groups are not expected to exhibit such a reactivity towards bond scission. Accordingly, O- hole centres formed by u.v. irradiation appear to be important in this bond fission. As a result of the interaction of O⁻ hole centres with alkenes or alkynes, weakening of the C=C or the C=C bond will occur during hydrogenation. As seen in the Figure, a linear relationship holds between the ionization potentials of the alkenes and the rates of cleavage of the C=C bond. Such a correlation is expected on the basis of the concept that electron transfer from alkenes to O- hole centres is involved in the weakening of the C=C bond.

FIGURE. Log(rate of cleavage of C=C bond, R) vs. ionization potentials of olefins. 1, CH₂=CH₂; 2, CH₃CH=CH₂; 3, (CH₃)₂CH=CH₂; 4, CH₂=CHCH=CH₂.

(Received, 17th March 1980; Com. 286.)

¹ V. B. Kazansky, *Kinet. Katal.*, 1978, **19**, 279; C. Yun, M. Anpo, and Y. Kubokawa, *Chem. Lett.*, 1979, 631. ² A. H. Boonstra and C. A. H. A. Mutsaers, *J. Phys. Chem.*, 1975, **79**, 2025.